
 PK_GRIB2
 3/15/02

 -1-

PK_GRIB2

PACKS DATA INTO GRIB2 FORMAT

 Bryon Lawrence
 April 5, 2001
 Bob Glahn
 David Rudack
 March 15, 2002

PURPOSE: To pack a gridded data field using the algorithm put

forth in version two of the World Meteorological Organi-
zation=s (WMO) standard for the exchange of General
Regularly-distributed Information in Binary form (GRIB2).
 GRIB2 provides a method of compressing data without loss
(depending on the scaling factors that the user chooses).
 The packed data are stored into a structured message
that also contains information that identifies and
defines the packed data grid. Such information includes
the time of generation of the gridded product, the source
of the gridded product, the type of map projection the
gridded product uses, what the data in the gridded
product represents, and which packing method was used to
compress the data in the gridded product.

The user passes the gridded data field into this routine
through either a two-dimensional integer or floating
point array depending on the type of data contained in
the data field. The information that identifies and
defines the data field and the packing method used to
compress it is passed into this routine through seven
one-dimensional, integer Asection@ arrays. Each of these
arrays corresponds to one of the first seven mandatory
sections of the GRIB2 message (Sections 0, 1, 3, 4, 5, 6,
and 7). Note that the user does not need to provide
information for Section 8 (the End Section). Supplemen-
tal data providing further qualification and quanti-
fication of a gridded product beyond what the structure
of GRIB2 already provides for can be placed into Section
2 (the Local Use Section). Section 2 is optional and
does not have to be included in the GRIB2 message.

This routine supports the simple, complex, and complex
with second order spatial differences packing methods.
If the simple packing method is chosen, then the data
field may contain primary missing values. If the complex
packing method is used, then the data field may contain
primary and secondary missing values (secondary missing
values may only be used if there can be primary missing
values). The user has the option of passing in the data
field with the primary missing values within it; or the
user may pass in the data field with the primary missing

 PK_GRIB2
 3/15/02

 -2-

values removed from it. In the latter case, the data
field must be accompanied by a bit-map identifying the
locations of the missing values relative to the defined
grid. Note that these options do not exist with second-
ary missing values; they must always be supplied to this
routine in their proper locations in the gridded data
field.

More than one data grid may be packed into a GRIB2
message. This routine provides the functionality needed
to pack multiple data grids into a single GRIB2 message.
 This is accomplished through repetitive calls to this
routine with the ANEW@ calling argument (see below)
properly set. According to WMO GRIB2 regulations,
Sections 2 through 7, 3 through 7, or 4 through 7 may be
repeated for each data grid packed into the GRIB2
message.

For a complete description of the GRIB2 format, tem-
plates, and code tables, the user is referred to the WMO
document FM 92-XII GRIB.

This routine supports the packing of the following
templates:

Grid Definition Templates (Section 3)

Template 3.0 (Latitude/Longitude)
Template 3.10 (Mercator)
Template 3.20 (Polar Stereographic Projection)
Template 3.30 (Lambert Conformal)
Template 3.90 (Space View Perspective or Orthographic)
Template 3.110 (Equatorial Azimuthal Equidistant Projec-

tion)
Template 3.120 (Azimuth-range Projection)

Product Definition Templates (Section 4)

Template 4.0 (Analysis or Forecast at a Horizontal

Level or in a Horizontal Layer at a Point
in Time)

Template 4.1 (Individual Ensemble Forecast, Control
and Perturbed, at a Horizontal Level or
in a Horizontal Layer at a Point in Time)

Template 4.2 (Derived Forecast Based on All Ensemble
Members at a Horizontal Level or in a
Horizontal Layer at a Point in Time)

Template 4.8 (Average, Accumulation, and/or Extreme
Values at a Horizontal Level or in a
Horizontal Layer in a Continuous or Non-
continuous Time Interval)

Template 4.20 (Radar Product)

 PK_GRIB2
 3/15/02

 -3-

Template 4.30 (Satellite Product)

Data Representation Templates (Section 5)

Template 5.0 (Simple Packing)
Template 5.2 (Complex Packing)
Template 5.3 (Complex Packing and Spatial Differences)

 (Note that only second order spatial
differences are supported at this time.)

Data Templates (Section 7)

Template 7.0 (Grid Point Data - Simple Packing)
Template 7.2 (Grid Point Data - Complex Packing)
Template 7.3 (Grid Point Data - Complex Packing and

Spatial Differences)

CALL AND EXPLANATION OF FORMAL PARAMETERS :

 CALL PK_GRIB2(KFILDO,AIN,IAIN,NX,NY,IDAT,NIDAT,
 1 RDAT,NRDAT,IS0,NS0,IS1,NS1,IS3,NS3,
 2 IS4,NS4,IS5,NS5,IS6,NS6,IS7,NS7,IB,
 3 IBITMAP,IPACK,ND5,MISSP,XMISSP,MISSS,
 4 XMISSS,NEW,MINPK,ICLEAN,L3264B,JER,
 5 NDJER,KJER)

KFILDO - Unit number of the output diagnostic (print) file.
 All lines of source that create diagnostic output
in the packer routine are Acommented out@ with a AD@
in column 1 of the source code. If the user
desires that diagnostic information be generated
when this packer is executed, then the option
specific to the Fortran compiler being used that
allows the compilation of debug lines as source
code must be used when building the packer library.
 When diagnostic information is desired, the user
must make sure that the file represented by this
number has been opened prior to calling the
Apk_grib2" routine. (INPUT)

AIN(L,M)- Array containing the gridded data to be packed

(L=1,NX) (M=1,NY). This array is used only when
the user is attempting to pack a data field con-
taining floating point values. If the user wants
to pack a data field consisting of integer values,
then IAIN() (see below) must be used to pass the
data into the packer. Note that when packing a
floating point data field, the user must set ele-
ment 21 in the IS5 array to A0". The contents of
this array are not modified. (INPUT)

 PK_GRIB2
 3/15/02

 -4-

IAIN(L,M) Array containing the gridded data to be packed when
the user is attempting to pack a data field con-
taining integer values (L=1, NX) (M=1, NY). If the
user wants to pack a data field consisting of
floating point values, then AIN() (see above) must
be used to pass the data field into the packer.
Note that when packing an integer data field, the
user must set element 21 in the IS5 array to A1".
The contents of this array are not modified.
(INPUT)

NX - The number of rows in the gridded product. (INPUT)

NY - The number of columns in the gridded product.

(INPUT)

IDAT(L) - Contains the local use data consisting of a group
or groups of integer values that will be packed
into Section 2, the Local Use Section, of the GRIB2
message (L=1,NIDAT). See the special documentation
concerning local use data below for an explanation
of how the integer data must be formatted in this
array. (INPUT)

NIDAT - The number of elements in the IDAT() array.

(INPUT)

RDAT(L) - Contains the local use data consisting of a group
or groups of floating point values that will be
packed into Section 2, the Local Use Section, of
the GRIB2 message (L=1,NRDAT). See the special
documentation concerning local use data below for
an explanation of how the floating point data must
be formatted in this array. (INPUT)

NRDAT - The number of elements in the RDAT() array.

(INPUT)

IS0(L) - Holds the data elements of Section 0 (the Indicator
Section) (L=1,NS0). The contents of this array are
modified by this routine. The user only needs to
supply a value in element 7 of this array repre-
senting the discipline of the processed data in the
GRIB2 message. See the GRIB2 section outline below
for a description of the data elements contained in
Section 0. (INPUT/OUTPUT)

NS0 - The dimension of IS0(). NS0=16 is sufficient.

(INPUT)

IS1(L) - Holds the data elements of Section 1 (the Identifi-
cation Section) (L=1,NS1). The contents of this

 PK_GRIB2
 3/15/02

 -5-

array are modified by this routine. See the GRIB2
section outline below to determine which elements
in this array the user needs to supply values for.
 (INPUT/OUTPUT)

NS1 - The dimension of IS1(). NS1=21 is sufficient.

(INPUT)

IS3(L) - Holds the values of Section 3 (the Grid Definition

Section) to be packed into the GRIB2 message
(L=1,NS3). Section 3 defines the type of map
projection that the data are in reference to. The
contents of this array are modified by this rou-
tine. See the GRIB2 section outline below to
determine which array elements the user needs to
supply values for. (INPUT/OUTPUT)

NS3 - The number of elements in the IS3() array. Since

the grid definition templates are of variable size,
the value of this parameter depends upon what type
of map the data field being packed is projected on.
 NS3=96 is sufficient for all templates except
template 3.120, the Azimuth-Range Projection, which
is used for radar images. In the case where tem-
plate 3.120 is being used, NS3=1600 should be
sufficient. (INPUT)

IS4(L) - Holds the values of Section 4 (the Product Defini-

tion Section) to be packed into the GRIB2 message
(L=1,NS4). Section 4 defines what the data in the
data field being packed represent, i.e., does the
data represent a map of 1-hour rainfall totals or
does it represent the height contours on an Avia-
tion Model 500-mb height forecast grid. The con-
tents of this array are modified by this routine.
See the GRIB2 section outline below to determine
which array elements the user needs to supply
values for. (INPUT/OUTPUT)

NS4 - The number of elements in the IS4() array. Since

the product definition templates are of variable
size, the value of this parameter depends upon what
type of product the data field being packed repre-
sents. NS4=60 should be sufficient for all of the
Section 4 product definition templates supported by
this packer, with the possible exception of tem-
plate 4.30, the Satellite Product, which could
require more array space depending upon the number
of contributing bands in the satellite image.
(INPUT)

 PK_GRIB2
 3/15/02

 -6-

IS5(L) - Holds the data values of Section 5 (the Data Repre-
sentation Section) to be packed into the GRIB2
message (L=1,NS5). Section 5 indicates which
packing method is to be used to pack the data field
into the GRIB2 message. The contents of this array
are modified by this routine. See the GRIB2 sec-
tion outline below to determine which array ele-
ments the user needs to supply values for.
(INPUT/OUTPUT)

NS5 - The number of elements in the IS5() array. Since

the data representation templates are of variable
size, the value of this parameter depends upon
which packing method is being used to pack the
gridded data field. NS5=49 is sufficiently large
enough for all of the Section 5 data representation
templates supported by this packer. (INPUT)

IS6(L) - Holds the data values of Section 6 (the Bit-map

Section) to be packed into the GRIB2 message
(L=1,NS6). Section 6 contains the optional, user-
supplied bit-map (or bit mask) showing the loca-
tions of the primary missing values in the data
field. The bit-map has a one-to-one correspondence
to the data points in the data field. So, if the
data field contains 1000 elements, then the bit-map
will contain 1000 bits. A bit set to A1" indicates
that the corresponding value in the data field is
valid; a bit set to A0" indicates that the corre-
sponding value in the data field is missing. The
contents of this array are modified by the packer.

A bit-map is packed only when the simple packing
method is being used. The complex packing method
(with or without second order spatial differences)
has a way of internally representing missing val-
ues. However, the user need to provide a bit-map
to the packer even when the complex packing method
is being used. For example, suppose a user has a
data field from which the missing values have been
removed and a bit-map that corresponds to that data
field indicating the positions of missing values.
Both the data field and the bit-map must be sup-
plied to the packer regardless of the packing
method that is being used. If the simple packing
method is being used, then the bit-map and data
field are packed just as they are. If the complex
or complex with second order spatial differences
packing method is being used, then the bit-map is
used to insert the missing values back into the
data field, and then the data field is packed (in
this case the bit-map is not packed).

 PK_GRIB2
 3/15/02

 -7-

As another example, suppose the user has a data
field with missing values in it, and there is no
corresponding bit-map showing the locations of the
missing values. If the simple packing method is
being used, then the packer will generate the bit-
map and remove the missing values from the data
field before packing. If the complex packing
method (with or without second order spatial dif-
ferences) is being used, then the data field is
packed just as it is (with the missing values
embedded in it).

The processing of the bit-map is largely determined
by the AIBITMAP@ and AICLEAN@ calling arguments
(described below). (INPUT/OUTPUT)

NS6 - The number of elements in the IS6() array. NS6=6

is sufficient. (INPUT)

IS7(L) - Holds the data elements for Section 7 (the Data
Section) to be packed into the GRIB2 message
(L=1,NS7). Section 7 contains the actual packed
data field. The contents of this array are modi-
fied by this routine. See the GRIB2 section out-
line below to determine which array elements the
user needs to supply values for. (INPUT/OUTPUT)

NS7 - The number of elements in the IS7 array. NS7=8 is

sufficient for all packing methods. (INPUT)

IB(L,M) - Contains the user-supplied bit-map (L=1,NX)
(M=1,NY). The bit-map must have a one-to-one
correspondence with the data field; that is, there
must be a bit in the bit-map for each data value in
the data field. A bit set to A1" in the bit-map
indicates that the corresponding value in the data
field is valid; a bit set to A0" in the bit-map
indicates that the corresponding value in the data
field is missing. When the user supplies a bit-map
to the packer, the AIBITMAP@ calling argument (see
below) must be set to A1".

If the user does not supply a bit-map, and the data
field being packed contains missing values (i.e.,
AICLEAN@ = 0, see below), and the simple packing
method is being used to pack the data, then this
routine will generate a bit-map in the IB() array.
 (INPUT/OUTPUT)

IBITMAP - A Aflag@ indicating whether or not the user is

supplying a bit-map in the IB() array. A value of
"1" indicates that a bit-map is being provided; a

 PK_GRIB2
 3/15/02

 -8-

value of "0" indicates that a bit-map is not being
provided. If IBITMAP = 0 and PK_GRIB2 generates a
bit map (see IB() above), IBITMAP is returned = 1.
 (INPUT/OUTPUT)

IPACK(L)- The array into which the GRIB2 message is packed

and returned to the caller (L=1,ND5). (OUTPUT)

ND5 The dimension of the IPACK() array.
ND5=(250+(NX*NY)+(NX* NY)/8 + the number of bytes
of local use data) should be sufficient for most
purposes for a single grid (see NEW below).
(INPUT)

MISSP - The integer representation of the primary missing

value. This is the value the packer will use when
a data field comprised of integer values is being
packed. When there are primary missing values and
one of the complex packing methods is being used,
then user must be sure to set IS5(23)=1. When
IS5(23) = 0, MISSP is not used, but zero is insert-
ed into IS5(24-27). (INPUT)

XMISSP - The floating point representation of the primary

missing value. This is the value the packer will
use when a data field comprised of floating point
values is being packed. When there are primary
missing values and one of the complex packing
methods is being used, then user must be sure to
set IS5(23)=1. When IS5(23) = 0, XMISSP is not
used, but zero is inserted into IS5(24-27).
(INPUT)

MISSS - The integer representation of the secondary missing

value. This is the value the packer will use when
a data field comprised of integer values is being
packed. There must be a primary missing value
specified in order to use a secondary missing
value, but the primary value does not have to
actually occur in the data. When there are primary
and secondary missing values and the complex pack-
ing method is being used, the user must be sure to
set IS5(23)=2. When IS5(23) = 0 or 1, XMISSP is
not used, but its value is inserted into IS5(28-
31). Secondary missing values cannot be used with
complex packing with second order spatial differ-
ences. (INPUT)

XMISSS - The floating point representation of the secondary

missing value. This is the value the packer will
use when a data field comprised of real-type values
is being packed. There must be a primary missing

 PK_GRIB2
 3/15/02

 -9-

specified value in order to use a secondary missing
value, but the primary value does not have to
actually occur in the data. When there are both
primary and secondary missing values to be consid-
ered and the complex packing method is being used,
the user must be sure to set IS5(23)=2. When
IS5(23) = 0 or 1, XMISSP is not used, but its value
is inserted into IS5(28-31). Secondary missing
values cannot be used with complex packing with
second order spatial differences. (INPUT)

NEW - When packing only one gridded data field into a

GRIB2 message, this parameter must always be set to
"1". When packing multiple gridded fields into a
single GRIB2 message, this parameter must be set to
"1" while packing the first data grid and then set
to "0" when packing the remaining data grids into
the GRIB2 message. This flag indicates to the
packer whether or not the grid currently being
processed is the first grid to be packed into the
GRIB2 message. (INPUT)

MINPK - This parameter applies only to the complex and

complex with second order spatial differences
packing methods. Its value represents the minimum
size of the groups that the complex packing method
can break the data down into. A recommended value
is A14". Changes to this value will likely have an
effect on the packing efficiency of this routine.
Exactly what this affect is depends on the nature
of the data. (INPUT)

ICLEAN - A flag indicating whether or not there are primary

missing values in the data field to be packed by
this routine. A value of A0" indicates that there
are primary missing values embedded within the data
field. A value of A1" indicates that there are not
any primary missing values embedded in the data
field. This may be changed by PK_GRIB2.
(INPUT/OUTPUT).

JER(L,M)- Contains any diagnostic or error codes along with

their severity levels generated in this routine
(L=1,NDJER) (M=1,2). This error-handling scheme
was developed to preserve all diagnostic informa-
tion generated during execution. Since some error
codes are non-fatal and offer information that is
of diagnostic value, it is possible that a run of
this GRIB2 encoder may generate several diagnostic
codes. This array provides the user with a way of
deducing a Atrace back.@ This error handling scheme
works as follows:

 PK_GRIB2
 3/15/02

 -10-

The rows in the JER array represent individual
error occurrences. The first column in the JER
array represents the error code; the second column
represents the severity of the error code.

 There are three severity levels that can be as-

signed to an error code:
0 = Not a Problem
1 = Warning
2 = Fatal

An error with a severity level of "Warning" does
not warrant the execution of the packer being
aborted. An error with a severity level of "Fatal"
results in the execution of the packer being halted
even if the GRIB2 message has not been completely
packed.

Each time the packer starts packing a new section
of the GRIB2 message, it places a three digit
section code representing the section being packed
followed by a severity level of A0" into the first
and second columns, respectively, of the next
available row of the JER array. Section codes are
0 (Section 0), 100 (Section 1), 200 (Section 2),
300 (Section 3), 400 (Section 4), 500 (Section 5),
600 (Section 6), 700 (Section 7), and 800
(Section 8).

When an error is encountered while packing a GRIB2
message, the routine detecting the error will place
the error code followed by its severity level into
the first and second columns, respectively, of the
next available row of the JER array.

For example, suppose a call to Apkbg@ failed while
packing Section 7 of a GRIB2 message because the
ANBIT@ calling argument did not have a value inclu-
sively contained in the range of 0 to 32. The
contents of the JER array upon being returned to
the caller of the "pk_grib2" subroutine would
appear as follows:

Contents of

JER

Diagnos-
tic/Error

Code

Severity

row 1

0

0

row 2

100

0

row 3

200

0

 PK_GRIB2
 3/15/02

 -11-

row 4 300 0

row 5

400

0

row 6

500

0

row 7

600

0

row 8

700

0

row 9

3

2

This tells the user that all sections up to
Section 7 were successfully packed. Note that the
diagnostic/error code 0 corresponds to Section 0;
100 corresponds to Section 1; 200 corresponds to
Section 2; 300 corresponds to Section 3; 400 corre-
sponds to Section 4; 500 corresponds to Section 5;
600 corresponds to Section 6; and 700 corresponds
to Section 7. Also note that since each of these
section codes is followed by a severity level of 0,
it means that the packing of the GRIB2 message has
been successful UP TO THAT SECTION. The error code
of A3" in row 9 is the error code generated by
routine Apkbg@ indicating the invalid value of the
ANBIT@ calling argument. The A2" in the severity
column indicates that the error being returned is
fatal and that the encoding of the GRIB2 message is
being halted with return to the user.

The advantage to using this error handling scheme
is that the caller can isolate where the problem
occurred (in this example, Section 7). This prob-
lem would be very difficult to find if the user was
given a single error code upon return from the
pk_grib2 routine, especially since the pkbg utility
is called throughout the entire encoder. This
error handling scheme was created to give the user
some type of error handling/traceback capability in
lieu of the packer actually printing out diagnostic
messages. However, if the user desires diagnostic
output, see the notes corresponding to the AKFILDO@
calling argument above. (OUTPUT)

NDJER - The number of rows in JER(). It is recommended

that this be set to at least A15". If this value is
not set large enough and the JER array fills up,
the last row of the JER array will be overwritten
with an error code of A999" with a fatal severity
level of A2". This will result in the loss of at
least two diagnostic codes and their corresponding
severity levels. The encoding of the GRIB2 message
will be halted with return to the user. (INPUT)

 PK_GRIB2
 3/15/02

 -12-

KJER - The number of error/diagnostic messages contained
within JER(). Useful for testing for errors when
program control is returned back to the calling
routine. (OUTPUT)

OUTPUT:

Diagnostic messages will be written to Unit No. AKFILDO@ when
pk_grib2 has been compiled using the compile options as outlined
above in the description of the AKFILDO@ calling argument.

RESTRICTIONS:

Care must be taken when choosing primary and secondary missing
values for a gridded data field. In general, the missing values
should represent numbers which are several orders of magnitude
larger than the actual data values. This is especially important
when using the complex and complex with second order spatial
differences packing methods. If the missing values are Atoo close@
in magnitude to the real data values, it is possible that upon
scaling and taking differences some real values will actually be
treated as missing values leading to erroneous results.

NONSYSTEM ROUTINES USED:

See the user associated library.

LANGUAGE: FORTRAN 90

GRIB2 FORMAT:

Nine sections are defined for GRIB2. Sections in () are optional.

Sec-
tion

Section Name

Section Contents

0

Indicator Section

AGRIB@, GRIB edition #, message
length

1

Identification
Section

Characteristics of all the processed
data

(2)

(Local Use
Section)

Additional items for local use

3

Grid Definition
Section

Geometry of values

4

Product Definition
Section

Description of following processed
data

5

Data Representa-
tion

How the processed data are repre-
sented

6

Bit-map Section Indicator of value being

 PK_GRIB2
 3/15/02

 -13-

present/absent

7

Data Section

Binary data values

8

End Section

A7777"

The contents of each section of the GRIB2 message, as well as
number of octets (bytes) required to store each element in the
section are detailed in the WMO document FM 92-XII GRIB. Arrays
named IS0-IS7 are used to pass the required input/output values
into and out of the packer. Each of these arrays corresponds to a
section in the GRIB2 message, e.g. array IS0 corresponds to
Section 0. The element number in each of these AIS@ arrays
corresponds to the beginning octet number where the data value is
stored in the section. So, for example, a value that is stored
starting in octet 5 of Section 5 would be placed into element 5 of
the IS5 array. In the following outline, data that need to be
provided by the user are indicated with an asterisk (*). All other
data elements are supplied by the packer.

Section 0:

IS0(1) = GRIB name, stored in bytes 1-4
IS0(7) = Discipline - master table number, stored in

byte 7 (*)
IS0(8) = GRIB edition number, stored in byte 8
IS0(9) = Total length of the GRIB message, stored in

bytes 9-16

Section 1:

IS1(1) = Length of section, stored in bytes 1-4
IS1(5) = Number of section, A1", stored in byte 5 (*)
IS1(6) = ID of originating/generating center, stored in

bytes 6-7 (*)
IS1(8) = ID of originating/generating sub-center, stored in

bytes 8-9 (*)
IS1(10) = GRIB Master tables version number, stored in

byte 10 (*)
IS1(11) = GRIB Local tables version number, stored in

byte 11 (*)
IS1(12) = Significance of Reference Time, stored in

byte 12 (*)
IS1(13) = Year (4 digits), stored in bytes 13-14 (*)
IS1(15) = Month, stored in byte 15 (*)
IS1(16) = Day, stored in byte 16 (*)
IS1(17) = Hour, stored in byte 17 (*)
IS1(18) = Minute, stored in byte 18 (*)
IS1(19) = Second, stored in byte 19 (*)
IS1(20) = Production status of processed data in message,

stored in byte 20 (*)
IS1(21) = Type of processed data in message, stored in

byte 21 (*)

 PK_GRIB2
 3/15/02

 -14-

Section 2:
See discussion below about Local Use Data.

Section 3:
IS3(1) = Length of section, stored in bytes 1-4
IS3(5) = Number of section, stored in byte 5 (*)
IS3(6) = Source of grid definition, stored in byte 6 (*)
IS3(7) = Number of data points, stored in bytes 7-10 (*)
IS3(11) = Number of octets for optional list of numbers

defining number of points, stored in byte 11 (*)
IS3(12) = Interpretation of list of numbers defining number

of points, stored in byte 12 (*)
IS3(13) = Grid Definition Template Number, stored in

byte 13 (*)
IS3(15) - IS3(nn) = Grid Definition Template, stored in

bytes 15-nn (*)

Section 4:

IS4(1) = Length of section, stored in bytes 1-4
IS4(5) = Number of section, stored in byte 5 (*)
IS4(6) = Number of coordinates values after the template,

stored in bytes 6-7 (*)
IS4(8) = Product Definition Template Number, stored in

bytes 8-9 (*)
IS4(10) - IS4(nn) = Product Definition Template, stored in

bytes 10-nn (*)

Section 5:

IS5(1) = Length of section, stored in bytes 1-4
IS5(5) = Number of section, stored in byte 5 (*)
IS5(6) = Number of data points where one or more values are

specified in Section 7 when a bit-map is present.
 Total number of data points when a bit-map is
absent, stored in bytes 6-9

IS5(10) = Data Representation Template Number, stored in
bytes 10-11 (*)

IS5(12) - IS5(nn) = Data Representation Template, stored in
bytes 12-nn (*)

Section 6:

IS6(1) = Length of section, stored in bytes 1-4
IS6(5) = Number of section, stored in byte 5 (*)
IS6(6) = Bit-map indicator, stored in byte 6
IS6(7) - IS6(nn) = Bit map stored in bytes 7-nn

Section 7:

IS7(1) = Length of section, stored in bytes 1-4
IS7(5) = Number of section, stored in byte 5 (*)

 IS7(6) - IS7(nn) = Data in a format described by the Data
Template Representation. Template number given in
octets 10-11 of section 5.

Section 8:

 PK_GRIB2
 3/15/02

 -15-

IS8(1) = A7777", the end of message indicator, stored in
bytes 1-4

Local Use Data (Section 2)

GRIB2 provides the capability to preserve and pass along
information about the gridded data that the GRIB2 format does not
provide specific templates or code tables for. Section 2 is
provided to contain this local use data. GRIB2 does not specify
any restrictions on the format of the data in Section 2, which
gives much flexibility in determining how to store data in
Section 2. The local use data processing scheme described below is
the one employed by Version 1 of the MDL GRIB2 encoder software.

The MDL GRIB2 packer allows the user to store both integer and
floating point groups of local use data. Since the amount of local
use data can be large, the simple packing method is employed to
compress the data in Section 2. The user must pick the decimal
scale factor to use in compressing each group of local use data.
Care must be taken when choosing the scale factor to optimize the
data compression while not compromising the precision of the data.
 For instance, when storing ASCII text local use data, it is
usually best to use a decimal scale factor of A0".

The local use data are supplied by the user through the arrays
IDAT() and RDAT() which are calling arguments to the Apk_grib2"
routine. Integer data are passed in using the IDAT() array while
floating point data are passed in using the RDAT() array. The
data must be supplied the following manner to ensure that they are
interpreted and packed correctly:

Array Element Number

Description of Content

1

Number of values in the first

group of data (N1).

2

The decimal scale factor to

use in packing the first group
of local use data (must be a

whole number).

3 to (N1+2)

First group of local use data

values.

N1+3

Number of values in the second
group of local use data (N2).

N1+4

The decimal scale factor to
use in packing the second

group of local use data (must
be a whole number).

(N1+5) to (N1+N2+4) Second group of local use data

 PK_GRIB2
 3/15/02

 -16-

values.

(K-1)*2+1+N1+N2+...+N(k-1)

Number of values in the Kth

group of data (Nk)

(K-1)*2+2+N1+N2+...+N(k-1)

The decimal scale factor to
use in packing the Kth group

of data.

(K-1)*2+3+N1+N2+...+N(k-1)

to
(K-1)*2+N1+N2+...+N(k-1)+Nk)

The Kth group of local use

data values.

(K-1)*2+1+N1+N2+...+Nk)

A0"

A value of A0" where the size
of the group goes means that
there are no more local use
data supplied in this array.

Note that this format applies to both the RDAT() and the
IDAT() arrays. Also, if there are no local use data, then element
1 of both arrays MUST have a value of A0".

Processing GRIB2 messages on Systems with Different Memory
Architectures

A few extra steps must be taken when using this software on a
system that uses a Alittle-endian@ memory architecture, where the
low-order byte of a word is in the word=s starting address. The
order of bytes in the message is at least implied to be high order
first and specifically the WMO documentation reads concerning
floating point, "The numbers are stored with the high order octet
first. The sign bit will be the first bit of the first octet. The
low order bit of the mantissa will be the last (eighth) bit of the
fourth octet. This floating point representation has been chosen
because it is in common use in modern computer hardware. Some
computers use this representation with the order of the octets
reversed. They will have to convert the representation, either by
reversing the octets or by computing the floating point value
directly..." PK_GRIB2 uses this "big endian" representation.

When packing a GRIB2 message on a Alittle-endian@ system, it is
essential that the bytes in the packed GRIB2 message be Aswapped@ to
conform to Abig-endian@ standards before the message is sent. This
should be done right after calling the Apk_grib2" routine to create
the packed message. A routine, named Apk_swap@, is provided in the
packer library to perform this byte swapping on the packed GRIB2
message. It takes as arguments the array containing the packed
message and the number of elements in that array. The byte
swapping is performed in-situ within the array.

 PK_GRIB2
 3/15/02

 -17-

The Apk_swap@ routine is written in the C-language for greater
efficiency. Exactly how this routine is linked into the user=s
executable depends upon the linker that is being used and the
language that the main routine is written in. When using a Fortran
main routine, it is recommended that the user see the Aman@ pages
supplied with the compiler/linker being used for information on how
to call a AC@ routine from a Fortran main routine.

The Apk_endian@ function (also supplied in the packer library) can
be called to determine the type of memory architecture of the
system that the GRIB2 message is being created on. This function
will return a value of ATRUE@ on a Abig-endian@ system and a value of
AFALSE@ on a Alittle-endian@ system. The following is a portion of a
Fortran driver demonstrating how to use the Apk_swap@ and Apk_endian@
routines:

 PROGRAM PACKER
C
 LOGICAL BIG
 ...
C
 CALL PK_GRIB2(KFILDO, AIN,IAIN,NX,NY,IDAT,NIDAT,RDAT,NRDAT,
 1 IS0,NS0,IS1,NS1,IS3,NS3,IS4,NS4,IS5,NS5,IS6,NS6,
 2 IS7,NS7,IB,IBITMAP,IPACK,ND5,MISSP,XMISSP,MISSS,
 3 XMISSS,NEW,MINPK,ICLEAN,L3264B,JER,NDJER,KJER)
C
 IF(JER(KJER,2).EQ.2)THEN
 WRITE(*,15) JER(KJER,1)
 15 FORMAT(//,1X,'FATAL ERROR IN PK_GRIB2 ERROR CODE ',I5)
 STOP
 ENDIF
C
 BIG=PK_ENDIAN()
C
 IF(.NOT.BIG)THEN
 CALL PK_SWAP(IPACK,ND5)
 ENDIF
C
 ...

Memory Management When Dealing with Large Data Grids

This routine makes extensive use of arrays, some of which can
become very large and consume considerable amounts of memory.
Normally, the user will declare in the main routine the arrays
being passed into Apk_grib2". For small data grids, these arrays
can be easily created on the stack. However, depending upon the
platform that the packer is being run on, large grids of data such
as those representing satellite data may overflow stack memory
resulting in a segmentation violation and abnormal termination of
the packer=s execution. A Awork around@ for this is to create the
large arrays (such as IPACK() , AIN(,) , IAIN(,) , and IB())

 PK_GRIB2
 3/15/02

 -18-

on the heap through dynamic memory allocation since the heap
typically offers much more storage than the stack does. The usual
precautions that accompany dynamic memory allocation apply here.
Namely, the user should free all dynamically allocated memory
before the termination of the main program.

Error Codes

The following is a list of all of the possible diagnostic and error
return codes that can be returned by this routine. An attempt has
been made to give the numeric codes a meaningful appearance that
will aid the user of this GRIB2 encoder in identifying which part
of the GRIB2 software is generating the error condition. For
example, errors encountered while packing Section 3 of the GRIB2
message will generally have a value ranging from 301 to 399 while
those encountered while packing Section 4 of the GRIB2 message will
generally have a value ranging from 401 to 499. Not all error
codes represent Afatal@ circumstances that require the termination
of the pk_grib2 routine. Along with the actual value of an error
code, severity information is also returned to the user indicating
whether the error represents a Afatal@ condition or is provided just
for diagnostic purposes. The bold routine name after each error
code is the routine that the error code originates in.

0 = A good return (all routines)
1 = Packing would overflow IPACK() (pkbg.f)
2 = IPOS is not in the range of 1 to L3264B (pkbg.f)

(pk_s7.f, pk_c7.f, length.f)
3 = NBIT is not in the range of 0 to 32 (pkbg.f, pkc7.f,

pks7.f)
4 = NBIT is equal to A0", but NVALUE is not equal to A0"

 (pkbg.f)
5 = LOC2 points to a word in IPACK() before the word

pointed to by LOC1 (length.f)
6 = LOC2 and LOC1 point to the same word, but IPOS2

points to a bit position before IPOS1 (length.f)
8 = Invalid option of data type in IS5(21) (pk_grib2.f)
101 = IS1(5) is not equal to value of "1" signifying Section

1 (pk_sect1.f)
102 = IS1() has not been dimensioned large enough

(pk_sect1.f)
202 = The IDAT() or RDAT() array was not dimensioned large

enough to contain the local use data. (pk_sect2.f)
301 = Section 3 exists and IS3(5) does not indicate Section

3 (pk_sect3.f)
302 = IS3() has not been dimensioned large enough to

contain the entire template(pk_azimuth.f,
pk_cylinder.f, pk_equator.f, pk_lambert.f,
pk_mercator.f, pk_orthographic.f, pk_polster.f,
pk_sect3.f)

303 = Map projection in IS3(13) is not supported
(pk_sect3.f)

 PK_GRIB2
 3/15/02

 -19-

304 = IS3(13) does not indicate a proper map projection;
incorrectly called subroutine (pk_azimuth.f,
pk_cylinder.f, pk_equator.f, pk_lambert.f,
pk_mercator.f, pk_orthographic.f, pk_polster.f)

305 = Section 2 exists but Section 3 does not (pk_grib2.f)
310 = Unsupported shape of earth code in IS3(15) (earth.f)
401 = IS4(5) does not indicate Section 4 (pk_sect4.f)
402 = IS4() has not been dimensioned large enough to

contain the entire template indicated by the code in
IS4(6). Returned by routines like (pk_temp40.f,
pk_sect41.f, pk_sect42.f, pk_sect420.f,
pk_sect430.f, pk_sect48.f, pk_sect4.f)

403 = IS4(8) does not contain a supported template number
(pk_sect4.f)

501 = IS5(5) does not indicate Section 5 (pk_sect5.f)
502 = IS5() has not been dimensioned large enough to

contain Section 5 (pk_sect5.f)
508 = Unsupported packing type (prepr.f)
601 = IS6(5) does not indicate Section 6 (pk_sect6.f)
602 = IS6() has not been dimensioned large enough to

contain Section 6 (pk_sect6.f)
605 = Not enough space in IPACK() to contain the packed

GRIB2 message (pk_bmap.f)
701 = IS7(5) does not indicate Section 7 (pk_sect7.f)
702 = IS7() has not been dimensioned large enough to

contain Section 7 (pk_sect7.f)
703 = Unsupported type of packing (pk_sect7.f)
705 = ND5 is not large enough to accommodate the bits

necessary to pack the values starting at the loca-
tion indicated by LOCN and IPOS (pk_c7.f, pk_s7.f)

706 = Value will not pack in 30 bits. (pack_gp.f;
pk_smple.f)

711 = LBIT contains an incorrect value (pk_cmplx.f)
712 = Incorrect splitting method (pk_cmplx.f)
713 = Unrecognized missing value flag in IS5(23)

(pk_cmplx.f)
714 = Problem in REDUCE. Results still ok, but more space

may be required and extra processing required.
(reduce.f)

715 = NGP not large enough. Results still ok, but addi-
tional processing time required. (reduce.f)

716 = MINPK locally increased. Results still ok (pack_gp.f)
717 = INC set = l locally. Results still ok (pack_gp.f)
901 = An invalid combination of ICLEAN, IS5(10) (packing

method), and (Missing values) was specified. See
external documentation. (check_int.f, check_flt.f)

902 = There are no "good" values in the grid and the bit-map
indicates that. Not treated as a Afatal@ error in
prepr (prep_noval.f)

903 = There are no values in the grid and the bit-map
indicates that there should be. Treated as fatal in
prepr (prep_noval.f)

 PK_GRIB2
 3/15/02

 -20-

904 = There are no values in the grid, and there is no
bit-map. Treated as a Afatal@ error in prepr
(prep_noval.f)

905 = Type of data in IS5(21) not correct (prepr.f)
906 = Simple packing, no missing values in array, bit map

provided, and NVAL = NXY. Unusual; notify the user
(pack_opt.f)

907 = Simple packing, no missing values in array, no bit map
provided, but NVAL is not equal NXY, unrecoverable
error (pack_opt.f)

908 = IS5(23) set = 0 consistent with ICLEAN = 1 and not
simple packing (pack_opt.f)

909 = IS5(23) set = 0 and ICLEAN set = 1 because there are
no missing values in the field (check_int.f;
check_flt.f, prepr.f)

910 = IS5(23) set = 1 because there are only primary missing
values in the field (check_int.f; check_flt.f,
pack_opt.f)

911 = IS5(10) set = 2 to indicate complex without 2nd order
differences because it is more efficient
(pack_opt.f)

912 = IS5(23) set = 2 to indicate secondary missing values
(pack_opt.f)

913 = Bit map being generated because input ICLEAN = 0 and
IBITMAP = 0 for simple packing (flt_map.f,
int_map.f)

914 = Bit map being incorporated into the data for non-
simple packing (flt_map.f, int_map.f)

915 = IS5(10) set = 2 because there are secondary missing
values and 2nd order differences not supported
(pack_opt.f)

916 = MISSS = MISSP, when IS5(23) = 2. IS5(23) set = 1.
(check_flt.f, check_int.f)

920 = A value larger than what can be packed into four bytes
has been encountered. (pk_missp.f, pk_nomiss.f,
pk_int, pk_flt)

999 = The JER() array is full (pk_trace.f)
1002= IS0() has not been dimensioned large enough

(pk_sect0.f)

Version Control:

This Version 1.1 has been modified from Version 1.0 only 1)
to add more diagnostic messages,) to improve readability and
comments, and 3) to correct any deficiencies found through
rigorous testing. GRIB offers many options, only a portion of
which are supported by PK_GRIB; even so, the number of combina-
tions is large and some errors could still remain.

